1. World Information Development Day

Answer: 2017-10-24 00:00:00

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Whats the day of/date of "World Telecommunication Day (Information society day), World Hypertension Day, World AIDS Vaccination day, International day against Homophobia and Transphobia"....
QA->World Telecommunication Day (Information society day), World Hypertension Day, World AIDS Vaccination day, International day against Homophobia and Transphobia....
QA->Whats the day of/date of "United Nations Day, World Development Information Day"....
QA->Whats the day of/date of "International Day of the Elimination of Racial Discrimination, International Day of Forest and World Down Syndrome Day, World Wood Day, World Sleep Day, Word Sparrow day"....
QA->United Nations Day, World Development Information Day....
MCQ-> India is rushing headlong toward economic success and modernisation, counting on high- tech industries such as information technology and biotechnology to propel the nation toprosperity. India’s recent announcement that it would no longer produce unlicensed inexpensive generic pharmaceuticals bowed to the realities of the World TradeOrganisation while at the same time challenging the domestic drug industry to compete with the multinational firms. Unfortunately, its weak higher education sector constitutes the Achilles’ Heel of this strategy. Its systematic disinvestment in higher education inrecent years has yielded neither world-class research nor very many highly trained scholars, scientists, or managers to sustain high-tech development. India’s main competitors especially China but also Singapore, Taiwan, and South Korea — are investing in large and differentiated higher education systems. They are providingaccess to large number of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with theworld’s best institutions. The recent London Times Higher Education Supplement ranking of the world’s top 200 universities included three in China, three in Hong Kong,three in South Korea, one in Taiwan, and one in India (an Indian Institute of Technology at number 41.— the specific campus was not specified). These countries are positioningthemselves for leadership in the knowledge-based economies of the coming era. There was a time when countries could achieve economic success with cheap labour andlow-tech manufacturing. Low wages still help, but contemporary large-scale development requires a sophisticated and at least partly knowledge-based economy.India has chosen that path, but will find a major stumbling block in its university system. India has significant advantages in the 21st century knowledge race. It has a large high ereducation sector — the third largest in the world in student numbers, after China andthe United States. It uses English as a primary language of higher education and research. It has a long academic tradition. Academic freedom is respected. There are asmall number of high quality institutions, departments, and centres that can form the basis of quality sector in higher education. The fact that the States, rather than the Central Government, exercise major responsibility for higher education creates a rather cumbersome structure, but the system allows for a variety of policies and approaches. Yet the weaknesses far outweigh the strengths. India educates approximately 10 per cent of its young people in higher education compared with more than half in the major industrialised countries and 15 per cent in China. Almost all of the world’s academic systems resemble a pyramid, with a small high quality tier at the top and a massive sector at the bottom. India has a tiny top tier. None of its universities occupies a solid position at the top. A few of the best universities have some excellent departments and centres, and there is a small number of outstanding undergraduate colleges. The University Grants Commission’s recent major support of five universities to build on their recognised strength is a step toward recognising a differentiated academic system and fostering excellence. At present, the world-class institutions are mainly limited to the Indian Institutes of Technology (IITs), the Indian Institutes of Management (IIMs) and perhaps a few others such as the All India Institute of Medical Sciences and the Tata Institute of Fundamental Research. These institutions, combined, enroll well under 1 percent of the student population. India’s colleges and universities, with just a few exceptions, have become large, under-funded, ungovernable institutions. At many of them, politics has intruded into campus life, influencing academic appointments and decisions across levels. Under-investment in libraries, information technology, laboratories, and classrooms makes it very difficult to provide top-quality instruction or engage in cutting-edge research.The rise in the number of part-time teachers and the freeze on new full-time appointments in many places have affected morale in the academic profession. The lackof accountability means that teaching and research performance is seldom measured. The system provides few incentives to perform. Bureaucratic inertia hampers change.Student unrest and occasional faculty agitation disrupt operations. Nevertheless, with a semblance of normality, faculty administrators are. able to provide teaching, coordinate examinations, and award degrees. Even the small top tier of higher education faces serious problems. Many IIT graduates,well trained in technology, have chosen not to contribute their skills to the burgeoning technology sector in India. Perhaps half leave the country immediately upon graduation to pursue advanced study abroad — and most do not return. A stunning 86 per cent of students in science and technology fields from India who obtain degrees in the United States do not return home immediately following their study. Another significant group, of about 30 per cent, decides to earn MBAs in India because local salaries are higher.—and are lost to science and technology.A corps of dedicated and able teachers work at the IlTs and IIMs, but the lure of jobs abroad and in the private sector make it increasingly difficult to lure the best and brightest to the academic profession.Few in India are thinking creatively about higher education. There is no field of higher education research. Those in government as well as academic leaders seem content to do the “same old thing.” Academic institutions and systems have become large and complex. They need good data, careful analysis, and creative ideas. In China, more than two-dozen higher education research centers, and several government agencies are involved in higher education policy.India has survived with an increasingly mediocre higher education system for decades.Now as India strives to compete in a globalized economy in areas that require highly trained professionals, the quality of higher education becomes increasingly important.India cannot build internationally recognized research-oriented universities overnight,but the country has the key elements in place to begin and sustain the process. India will need to create a dozen or more universities that can compete internationally to fully participate in the new world economy. Without these universities, India is destined to remain a scientific backwater.Which of the following ‘statement(s) is/are correct in the context of the given passage ? I. India has the third largest higher education sector in the world in student numbers. II. India is moving rapidly toward economic success and modernisation through high tech industries such as information technology and bitechonology to make the nation to prosperity. III. India’s systematic disinvestment in higher education in recent years has yielded world class research and many world class trained scholars, scientists to sustain high-tech development....
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in ‘’bold’’ to help you locate them while answering some of the questions.As increasing dependence on information systems develops, the need for such system to be reliable and secure also becomes more essential. As growing numbers of ordinary citizens use computer networks for banking, shopping, etc., network security in potentially a ‘’massive’’ problem. Over the last few years, the need for computer and information security system has become increasingly evident, as web sites are being defaced with greater frequency, more and more denial-of-service attacks are being reported, credit card information is being stolen, there is increased sophistication of hacking tools that are openly available to the public on the Internet, and there is increasing damage being caused by viruses and worms to critical information system resources.At the organizational level, institutional mechanism have to be designed in order to review policies, practices, measures and procedures to review e-security regularly and assess whether these are appropriate to their environment. It would be helpful if organizations share information about threats and vulnerabilities, and implement procedures of rapid and effective cooperation to prevent, detect and respond to security incidents. As new threats and vulnerabilities are continuously discovered there is a strong need for co-operation among organizations and, if necessary, we could also consider cross-border information sharing. We need to understand threats and dangers that could be ‘’vulnerable’’ to and the steps that need to be taken to ‘’mitigate’’ these vulnerabilities. We need to understand access control systems and methodology, telecommunications and network security, and security management practise. We should be well versed in the area of application and systems development security, cryptography, operations security and physical security.The banking sector is ‘’poised’’ for more challenges in the near future. Customers of banks can now look forward to a large array of new offerings by banks, from an ‘’era’’ of mere competition, banks are now cooperating among themselves so that the synergistic benefits are shared among all the players. This would result in the information of shared payment networks (a few shared ATM networks have already been commissioned by banks), offering payment services beyond the existing time zones. The Reserve Bank is also facilitating new projects such as the Multi Application Smart Card Project which, when implemented, would facilitate transfer of funds using electronic means and in a safe and secure manner across the length and breadth of the country, with reduced dependence on paper currency. The opportunities of e-banking or e-power is general need to be harnessed so that banking is available to all customers in such a manner that they would feel most convenient, and if required, without having to visit a branch of a bank. All these will have to be accompanied with a high level of comfort, which again boils down to the issue of e-security.One of the biggest advantages accruing to banks in the future would be the benefits that arise from the introduction of Real Time Gross Settlement (RTGS). Funds management by treasuries of banks would be helped greatly by RTGS. With almost 70 banks having joined the RTGS system, more large value funds transfer are taking place through this system. The implementation of Core Banking solutions by the banks is closely related to RTGS too. Core Banking will make anywhere banking a reality for customers of each bank. while RTGS bridges the need for inter-bank funds movement. Thus, the days of depositing a cheque for collection and a long wait for its realization would soon be a thing of the past for those customers who would opt for electronic movement of funds, using the RTGS system, where the settlement would be on an almost ‘’instantaneous’’ basis. Core Banking is already in vogue in many private sector and foreign banks; while its implementation is at different stages amongst the public sector banks.IT would also facilitate better and more scientific decision-making within banks. Information system now provide decision-makers in banks with a great deal of information which, along with historical data and trend analysis, help in the building up of efficient Management Information Systems. This, in turn, would help in better Asset Liability Management (ALM) which, today’s world of hairline margins is a key requirement for the success of banks in their operational activities. Another benefit which e-banking could provide for relates to Customer Relationship Management (CRM). CRM helps in stratification of customers and evaluating customer needs on a holistic basis which could be paving the way for competitive edge for banks and complete customer care for customer of banks.The content of the passage ‘’mainly’’ emphasizes----
 ...
MCQ-> Read the following passage carefully and answer the questions given below it. Certain words/phrases have been printed in bold to help you locate them while answering some of the questions. Long ago, a Brahmin called Haridatta lived in a little village. He was a farmer but the piece of land he cultivated provided him with so little to survive on that he was very poor. One day, unable to stand the heat of the summer sun, he went to rest for a whilevunder a big tree on his land. Before he could stretch out on the ground, he saw a huge black cobra slithering out of an anthill nearby. The snake then spread hisvhood and swayed gracefully from side to side. Haridatta was astonished tov seevthis and he thought, “This cobra must really be the god of this land. I have nevervseen or worshipped him before, which is probably why I am not able to get anything from the land. From this day onwards, I will worship him.” He hurried back to his home at once and returned with a glass full of milk. He poured it into a bowl and turning to the anthill said, “0 ruler of the land, I did not know you were living in this anthill. That is why I have not paid my tribute to you. Please accept my apologies for this omission and accept this humble offering.” He then placed the bowl of milk at the entrance of the anthill and left the place. The next day when the Brahmin arrived to work on his land before the sun rose, he found a gold coin in the bowl he had left at the anthill. He was very happy indeed and from that day on, he made it a practice to offer the cobra milk in a bowl each day. The next morning he would collect a gold coin and leave. One day Haridatta had to go to a neighbouring village on business. He asked his son to go to the anthill as usual and leave a bowl of milk for the cobra. The son did as he was told, but when he went to the same spot the next day and collected the gold coin he thought, “This anthill must be full of gold. If I kill the cobra, I can collect all the gold in an instant, instead of having to waste my time coming here every day.” He then struck the cobra with a big stick. The cobra deftly dodged the blow but bit Haridatta’s son with his poisonous fangs. The boy soon died. When Haridatta returned to his village the next day, he heard how his son had met his death. He realised at once that his son’s greed would probably have caused him to attack the cobra. The Brahmin went to the anthill the day after his son’s cremation and offered milk to the cobra as usual. This time, the cobra did not even come out of his hole. Instead, he called out to Haridatta, “You have come here for gold, forgetting That you have just lost a precious son and that you are in mourning. The reason for this is pure greed. From today, there is no meaning to our relationship. I am going to give you a diamond as a final gift. But please don’t ever come back again.” He slithered away as the Brahmin watched.Which of the following is TRUE according to the story ?
 ...
MCQ-> Two traders, Chetan and Michael, were involved in the buying and selling Of MCS shares over five trading days. At the beginning of the first day, the MCS share was priced at Rs 100, while at the end of the fifth day it was priced at Rs 110. At the end of each day, the MCS share price either went up by Rs 10, or else, it came down by Rs 10. Both Chetan and Michael took buying and selling decisions at the end of each trading day. The beginning price of MCS share on a given day was the same as the ending price of the previous day. Chetan and Michael started with the same number of shares and amount of cash, and had enough of both. Below are some additional facts about how Chetan and Michael traded over the five trading days.• Each day if the price went up, Chetan sold 10 shares of MCS at the closing price. On the other hand, each day if the price went down, he bought 10 shares at the closing price.• If on any day, the closing price was above Rs 110, then Michael sold 10 shares of MCS, while if it was below Rs 90, he bought 10 shares, all at the closing price.If Chetan sold 10 shares of MCS on three consecutive days, while Michael sold 10 shares only once during the five days, what was the price of MCS at the end of day 3?
 ...
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions