1. Who discovered Theory of Evolution ?

Answer: Charles Darwin

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Who discovered Theory of Evolution ?....
QA->Who is the inventor of Evolution; Theory?....
QA->Charles Darwin published his theory of Evolution in his famous book ?....
QA->The theory of use and disuse was used to explain evolution by which scientist?....
QA->Theory of Evolution was invented by ?....
MCQ-> Read the following passage and provide appropriate answers for the questionsThis is one of the unanswered questions that I want to explore. I believe that this is certainly one of the deeper questions about technology. Why do I say so? Without evolution technologies seem to be born independently and improve independently. Each must come from some unexplained mental process, some form of creativity or thinking outside the box that brings it into existence and separately develops it. With evolution, new technologies would be birthed in some precise way from previous ones, albeit with considerable mid-wifing, and develop though some understood process of adaptation. In other words, if we could understand evolution, we could understand the most precious of processes: innovation. But, let me define evolution before I proceed further. The word evolution has two general meanings. One is the gradual development of something, as with the evolution of ballet or the English madrigal. The other is the process by which all objects of some class are related by ties of common descent from the collection of earlier objects. The latter is what I mean by evolution.Which of the following can be inferred from the passage? I. The author’s main concern is to develop a theory of innovation. II. The author is interested in putting forth a theory of technological evolution. III. The author believes before developing a theory of technological evolution, one needs to investigated whether technology evolves at all. IV. Evolution, as the author puts it, is a sense of common relatedness....
MCQ->S1: Biological evolution has not fitted man to any specific environment. P : It is by no means a biological evolution, but it is a cultural one. Q : His imagination, his reason, his emotional subtlety and toughness, makes it possible for him not to accept the environment but to change. R : And that series of inventions by which man from age by age has reshaped his environment is a different kind of evolution. S : Among the multitude of animals which scamper, burrow swim around us he is in the only one who is not locked in to his environment. S6: That brilliant sequence of cultural peaks can most appropriately be termed the ascent of man. The Proper sequence should be:...
MCQ-> Our propensity to look out for regularities, and to impose laws upon nature, leads to the psychological phenomenon of dogmatic thinking or, more generally, dogmatic behaviour: we expect regularities everywhere and attempt to find them even where there are none; events which do not yield to these attempts we are inclined to treat as a kind of `background noise’; and we stick to our expectations even when they are inadequate and we ought to accept defeat. This dogmatism is to some extent necessary. It is demanded by a situation which can only be dealt with by forcing our conjectures upon the world. Moreover, this dogmatism allows us to approach a good theory in stages, by way of approximations: if we accept defeat too easily, we may prevent ourselves from finding that we were very nearly right.It is clear that this dogmatic attitude; which makes us stick to our first impressions, is indicative of a strong belief; while a critical attitude, which is ready to modify its tenets, which admits doubt and demands tests, is indicative of a weaker belief. Now according to Hume’s theory, and to the popular theory, the strength of a belief should be a product of repetition; thus it should always grow with experience, and always be greater in less primitive persons. But dogmatic thinking, an uncontrolled wish to impose regularities, a manifest pleasure in rites and in repetition as such, is characteristic of primitives and children; and increasing experience and maturity sometimes create an attitude of caution and criticism rather than of dogmatism.My logical criticism of Hume’s psychological theory, and the considerations connected with it, may seem a little removed from the field of the philosophy of science. But the distinction between dogmatic and critical thinking, or the dogmatic and the critical attitude, brings us right back to our central problem. For the dogmatic attitude is clearly related to the tendency to verify our laws and schemata by seeking to apply them and to confirm them, even to the point of neglecting refutations, whereas the critical attitude is one of readiness to change them - to test them; to refute them; to falsify them, if possible. This suggests that we may identify the critical attitude with the scientific attitude, and the dogmatic attitude with the one which we have described as pseudo-scientific. It further suggests that genetically speaking the pseudo-scientific attitude is more primitive than, and prior to, the scientific attitude: that it is a pre-scientific attitude. And this primitivity or priority also has its logical aspect. For the critical attitude is not so much opposed to the dogmatic attitude as super-imposed upon it: criticism must be directed against existing and influential beliefs in need of critical revision – in other words, dogmatic beliefs. A critical attitude needs for its raw material, as it were, theories or beliefs which are held more or less dogmatically.Thus, science must begin with myths, and with the criticism of myths; neither with the collection of observations, nor with the invention of experiments, but with the critical discussion of myths, and of magical techniques and practices. The scientific tradition is distinguished from the pre-scientific tradition in having two layers. Like the latter, it passes on its theories; but it also passes on a critical attitude towards them. The theories are passed on, not as dogmas, but rather with the challenge to discuss them and improve upon them.The critical attitude, the tradition of free discussion of theories with the aim of discovering their weak spots so that they may be improved upon, is the attitude of reasonableness, of rationality. From the point of view here developed, all laws, all theories, remain essentially tentative, or conjectural, or hypothetical, even when we feel unable to doubt them any longer. Before a theory has been refuted we can never know in what way it may have to be modified.In the context of science, according to the passage, the interaction of dogmatic beliefs and critical attitude can be best described as:
 ...
MCQ->Read the Following statements and answer the question that follows:1. But its most advanced formulation is called superstring theory, which even predicts the precise number of dimensions: ten. 2. However, the theory has already swept across the major physics research laboratories of the world and has irrevocably altered the scientific landscape of modern physics, generating a staggering number of research papers in the scientific literature (over 5,000 by one count). 3. Scientifically, the hyperspace theory goes by the names of Kaluza-Klein theory and supergravity. 4. The usual three dimensions of space (length, width, and breadth) and one of time are now extended by six more spatial dimensions. 5. We caution that the theory of hyperspace has not yet been experimentally confirmed and would, in fact, be exceedingly difficult to prove in the laboratory. Rank the above five statements so as to make it a logical sequence:...
MCQ-> Analyze the following passage and provide appreciate answers for the questions that follow. Ideas involving the theory probability play a decisive part in modern physics. Yet we will still lack a satisfactory, consistence definition of probability; or, what amounts to much the same, we still lack a satisfactory axiomatic system for the calculus of probability. The relations between probability and experience are also still in need of clarification. In investigating this problem we shall discover what will at first seem an almost insuperable objection to my methodological views. For although probability statements play such a vitally important role in empirical science, they turn out to be in principle impervious to strict falsification. Yet this very stumbling block will become a touchstone upon which to test my theory, in order to find out what it is worth. Thus, we are confronted with two tasks. The first is to provide new foundations for the calculus of probability. This I shall try to do by developing the theory of probability as a frequency theory, along the lines followed by Richard von Mises, But without the use of what he calls the ‘axiom of convergence’ (or ‘limit axiom’) and with a somewhat weakened ‘axiom of randomness’ The second task is to elucidate the relations between probability and experience. This means solving what I call the problem of decidability statements. My hope is that the investigations will help to relieve the present unsatisfactory situation in which physicists make much use of probabilities without being able to say, consistently, what they mean by ‘probability’.The statement, “The relations between probability and experience are still in need of clarification” implies that:
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions