1. Who hit the fastest century of World Cup?

Answer: Kevin O’Brien (Ireland).

Reply

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Tags
Show Similar Question And Answers
QA->Who hit the fastest century of World Cup?....
QA->Indian batsman who hit the fastest century by an Indian in one-day internationals surpassing Virender Sehwag"s four-year old record in the second one-dayer against Australia in Jaipur on October 16, 2013?....
QA->Which batsman has broken the World record for the fastest 50 and 100 in ODI history, after slamming a half-century in 16 balls and getting to his century in just 31 balls in the 2nd ODI against West Indies?....
QA->Who hit the fastest fifty of World Cup?....
QA->Who became the second cricketer to hit triple century and a century in same test match?....
MCQ-> The broad scientific understanding today is that our planet is experiencing a warming trend over and above natural and normal variations that is almost certainly due to human activities associated with large-scale manufacturing. The process began in the late 1700s with the Industrial Revolution, when manual labor, horsepower, and water power began to be replaced by or enhanced by machines. This revolution, over time, shifted Britain, Europe, and eventually North America from largely agricultural and trading societies to manufacturing ones, relying on machinery and engines rather than tools and animals.The Industrial Revolution was at heart a revolution in the use of energy and power. Its beginning is usually dated to the advent of the steam engine, which was based on the conversion of chemical energy in wood or coal to thermal energy and then to mechanical work primarily the powering of industrial machinery and steam locomotives. Coal eventually supplanted wood because, pound for pound, coal contains twice as much energy as wood (measured in BTUs, or British thermal units, per pound) and because its use helped to save what was left of the world's temperate forests. Coal was used to produce heat that went directly into industrial processes, including metallurgy, and to warm buildings, as well as to power steam engines. When crude oil came along in the mid- 1800s, still a couple of decades before electricity, it was burned, in the form of kerosene, in lamps to make light replacing whale oil. It was also used to provide heat for buildings and in manufacturing processes, and as a fuel for engines used in industry and propulsion.In short, one can say that the main forms in which humans need and use energy are for light, heat, mechanical work and motive power, and electricity which can be used to provide any of the other three, as well as to do things that none of those three can do, such as electronic communications and information processing. Since the Industrial Revolution, all these energy functions have been powered primarily, but not exclusively, by fossil fuels that emit carbon dioxide (CO2), To put it another way, the Industrial Revolution gave a whole new prominence to what Rochelle Lefkowitz, president of Pro-Media Communications and an energy buff, calls "fuels from hell" - coal, oil, and natural gas. All these fuels from hell come from underground, are exhaustible, and emit CO2 and other pollutants when they are burned for transportation, heating, and industrial use. These fuels are in contrast to what Lefkowitz calls "fuels from heaven" -wind, hydroelectric, tidal, biomass, and solar power. These all come from above ground, are endlessly renewable, and produce no harmful emissions.Meanwhile, industrialization promoted urbanization, and urbanization eventually gave birth to suburbanization. This trend, which was repeated across America, nurtured the development of the American car culture, the building of a national highway system, and a mushrooming of suburbs around American cities, which rewove the fabric of American life. Many other developed and developing countries followed the American model, with all its upsides and downsides. The result is that today we have suburbs and ribbons of highways that run in, out, and around not only America s major cities, but China's, India's, and South America's as well. And as these urban areas attract more people, the sprawl extends in every direction.All the coal, oil, and natural gas inputs for this new economic model seemed relatively cheap, relatively inexhaustible, and relatively harmless-or at least relatively easy to clean up afterward. So there wasn't much to stop the juggernaut of more people and more development and more concrete and more buildings and more cars and more coal, oil, and gas needed to build and power them. Summing it all up, Andy Karsner, the Department of Energy's assistant secretary for energy efficiency and renewable energy, once said to me: "We built a really inefficient environment with the greatest efficiency ever known to man."Beginning in the second half of the twentieth century, a scientific understanding began to emerge that an excessive accumulation of largely invisible pollutants-called greenhouse gases - was affecting the climate. The buildup of these greenhouse gases had been under way since the start of the Industrial Revolution in a place we could not see and in a form we could not touch or smell. These greenhouse gases, primarily carbon dioxide emitted from human industrial, residential, and transportation sources, were not piling up along roadsides or in rivers, in cans or empty bottles, but, rather, above our heads, in the earth's atmosphere. If the earth's atmosphere was like a blanket that helped to regulate the planet's temperature, the CO2 buildup was having the effect of thickening that blanket and making the globe warmer.Those bags of CO2 from our cars float up and stay in the atmosphere, along with bags of CO2 from power plants burning coal, oil, and gas, and bags of CO2 released from the burning and clearing of forests, which releases all the carbon stored in trees, plants, and soil. In fact, many people don't realize that deforestation in places like Indonesia and Brazil is responsible for more CO2 than all the world's cars, trucks, planes, ships, and trains combined - that is, about 20 percent of all global emissions. And when we're not tossing bags of carbon dioxide into the atmosphere, we're throwing up other greenhouse gases, like methane (CH4) released from rice farming, petroleum drilling, coal mining, animal defecation, solid waste landfill sites, and yes, even from cattle belching. Cattle belching? That's right-the striking thing about greenhouse gases is the diversity of sources that emit them. A herd of cattle belching can be worse than a highway full of Hummers. Livestock gas is very high in methane, which, like CO2, is colorless and odorless. And like CO2, methane is one of those greenhouse gases that, once released into the atmosphere, also absorb heat radiating from the earth's surface. "Molecule for molecule, methane's heat-trapping power in the atmosphere is twenty-one times stronger than carbon dioxide, the most abundant greenhouse gas.." reported Science World (January 21, 2002). “With 1.3 billion cows belching almost constantly around the world (100 million in the United States alone), it's no surprise that methane released by livestock is one of the chief global sources of the gas, according to the U.S. Environmental Protection Agency ... 'It's part of their normal digestion process,' says Tom Wirth of the EPA. 'When they chew their cud, they regurgitate [spit up] some food to rechew it, and all this gas comes out.' The average cow expels 600 liters of methane a day, climate researchers report." What is the precise scientific relationship between these expanded greenhouse gas emissions and global warming? Experts at the Pew Center on Climate Change offer a handy summary in their report "Climate Change 101. " Global average temperatures, notes the Pew study, "have experienced natural shifts throughout human history. For example; the climate of the Northern Hemisphere varied from a relatively warm period between the eleventh and fifteenth centuries to a period of cooler temperatures between the seventeenth century and the middle of the nineteenth century. However, scientists studying the rapid rise in global temperatures during the late twentieth century say that natural variability cannot account for what is happening now." The new factor is the human factor-our vastly increased emissions of carbon dioxide and other greenhouse gases from the burning of fossil fuels such as coal and oil as well as from deforestation, large-scale cattle-grazing, agriculture, and industrialization.“Scientists refer to what has been happening in the earth’s atmosphere over the past century as the ‘enhanced greenhouse effect’”, notes the Pew study. By pumping man- made greenhouse gases into the atmosphere, humans are altering the process by which naturally occurring greenhouse gases, because of their unique molecular structure, trap the sun’s heat near the earth’s surface before that heat radiates back into space."The greenhouse effect keeps the earth warm and habitable; without it, the earth's surface would be about 60 degrees Fahrenheit colder on average. Since the average temperature of the earth is about 45 degrees Fahrenheit, the natural greenhouse effect is clearly a good thing. But the enhanced greenhouse effect means even more of the sun's heat is trapped, causing global temperatures to rise. Among the many scientific studies providing clear evidence that an enhanced greenhouse effect is under way was a 2005 report from NASA's Goddard Institute for Space Studies. Using satellites, data from buoys, and computer models to study the earth's oceans, scientists concluded that more energy is being absorbed from the sun than is emitted back to space, throwing the earth's energy out of balance and warming the globe."Which of the following statements is correct? (I) Greenhouse gases are responsible for global warming. They should be eliminated to save the planet (II) CO2 is the most dangerous of the greenhouse gases. Reduction in the release of CO2 would surely bring down the temperature (III) The greenhouse effect could be traced back to the industrial revolution. But the current development and the patterns of life have enhanced their emissions (IV) Deforestation has been one of the biggest factors contributing to the emission of greenhouse gases Choose the correct option:...
MCQ->Read the following paragraph and answer the question that follows:Indian religious and ethical space is different from that of the western countries. The Vedas, the Upanishads, the Bhagavad Gita, the Ramayana, and the Mahabharata etc. enrich Indian religious and social space. Details of the treatment of human values and Dharmas have a long tradition. They are often compared, contrasted and debated by the characters in the Ramayana and the Mahabharata. In the process, it has given birth to a tradition of dharma, which has been transferred from generation to generation. Ethical discourse was not a one-time affair. From time to time, religious leaders from various regions of India nourished and strengthened the Indian ethical arena. Tiruvalluvar (second century B.C.), Kabir from Uttar Pradesh (fifteenth century A.D.), Nanak from Punjab (fifteenth century A.D), Alvars and Nayanmars of Tamil Nadu (eighth century A.D.), Basaveswara of Karnataka (Twelfth century A.D.), Sri Chaitanya (Sixteenth century) were prominent.Which of the following assumptions will make the above paragraph redundant?...
MCQ-> India is rushing headlong toward economic success and modernisation, counting on high- tech industries such as information technology and biotechnology to propel the nation toprosperity. India’s recent announcement that it would no longer produce unlicensed inexpensive generic pharmaceuticals bowed to the realities of the World TradeOrganisation while at the same time challenging the domestic drug industry to compete with the multinational firms. Unfortunately, its weak higher education sector constitutes the Achilles’ Heel of this strategy. Its systematic disinvestment in higher education inrecent years has yielded neither world-class research nor very many highly trained scholars, scientists, or managers to sustain high-tech development. India’s main competitors especially China but also Singapore, Taiwan, and South Korea — are investing in large and differentiated higher education systems. They are providingaccess to large number of students at the bottom of the academic system while at the same time building some research-based universities that are able to compete with theworld’s best institutions. The recent London Times Higher Education Supplement ranking of the world’s top 200 universities included three in China, three in Hong Kong,three in South Korea, one in Taiwan, and one in India (an Indian Institute of Technology at number 41.— the specific campus was not specified). These countries are positioningthemselves for leadership in the knowledge-based economies of the coming era. There was a time when countries could achieve economic success with cheap labour andlow-tech manufacturing. Low wages still help, but contemporary large-scale development requires a sophisticated and at least partly knowledge-based economy.India has chosen that path, but will find a major stumbling block in its university system. India has significant advantages in the 21st century knowledge race. It has a large high ereducation sector — the third largest in the world in student numbers, after China andthe United States. It uses English as a primary language of higher education and research. It has a long academic tradition. Academic freedom is respected. There are asmall number of high quality institutions, departments, and centres that can form the basis of quality sector in higher education. The fact that the States, rather than the Central Government, exercise major responsibility for higher education creates a rather cumbersome structure, but the system allows for a variety of policies and approaches. Yet the weaknesses far outweigh the strengths. India educates approximately 10 per cent of its young people in higher education compared with more than half in the major industrialised countries and 15 per cent in China. Almost all of the world’s academic systems resemble a pyramid, with a small high quality tier at the top and a massive sector at the bottom. India has a tiny top tier. None of its universities occupies a solid position at the top. A few of the best universities have some excellent departments and centres, and there is a small number of outstanding undergraduate colleges. The University Grants Commission’s recent major support of five universities to build on their recognised strength is a step toward recognising a differentiated academic system and fostering excellence. At present, the world-class institutions are mainly limited to the Indian Institutes of Technology (IITs), the Indian Institutes of Management (IIMs) and perhaps a few others such as the All India Institute of Medical Sciences and the Tata Institute of Fundamental Research. These institutions, combined, enroll well under 1 percent of the student population. India’s colleges and universities, with just a few exceptions, have become large, under-funded, ungovernable institutions. At many of them, politics has intruded into campus life, influencing academic appointments and decisions across levels. Under-investment in libraries, information technology, laboratories, and classrooms makes it very difficult to provide top-quality instruction or engage in cutting-edge research.The rise in the number of part-time teachers and the freeze on new full-time appointments in many places have affected morale in the academic profession. The lackof accountability means that teaching and research performance is seldom measured. The system provides few incentives to perform. Bureaucratic inertia hampers change.Student unrest and occasional faculty agitation disrupt operations. Nevertheless, with a semblance of normality, faculty administrators are. able to provide teaching, coordinate examinations, and award degrees. Even the small top tier of higher education faces serious problems. Many IIT graduates,well trained in technology, have chosen not to contribute their skills to the burgeoning technology sector in India. Perhaps half leave the country immediately upon graduation to pursue advanced study abroad — and most do not return. A stunning 86 per cent of students in science and technology fields from India who obtain degrees in the United States do not return home immediately following their study. Another significant group, of about 30 per cent, decides to earn MBAs in India because local salaries are higher.—and are lost to science and technology.A corps of dedicated and able teachers work at the IlTs and IIMs, but the lure of jobs abroad and in the private sector make it increasingly difficult to lure the best and brightest to the academic profession.Few in India are thinking creatively about higher education. There is no field of higher education research. Those in government as well as academic leaders seem content to do the “same old thing.” Academic institutions and systems have become large and complex. They need good data, careful analysis, and creative ideas. In China, more than two-dozen higher education research centers, and several government agencies are involved in higher education policy.India has survived with an increasingly mediocre higher education system for decades.Now as India strives to compete in a globalized economy in areas that require highly trained professionals, the quality of higher education becomes increasingly important.India cannot build internationally recognized research-oriented universities overnight,but the country has the key elements in place to begin and sustain the process. India will need to create a dozen or more universities that can compete internationally to fully participate in the new world economy. Without these universities, India is destined to remain a scientific backwater.Which of the following ‘statement(s) is/are correct in the context of the given passage ? I. India has the third largest higher education sector in the world in student numbers. II. India is moving rapidly toward economic success and modernisation through high tech industries such as information technology and bitechonology to make the nation to prosperity. III. India’s systematic disinvestment in higher education in recent years has yielded world class research and many world class trained scholars, scientists to sustain high-tech development....
MCQ-> Crinoline and croquet are out. As yet, no political activists have thrown themselves in front of the royal horse on Derby Day. Even so, some historians can spot the parallels. It is a time of rapid technological change. It is a period when the dominance of the world’s superpower is coming under threat. It is an epoch when prosperity masks underlying economic strain. And, crucially, it is a time when policy-makers are confident that all is for the best in the best of all possible worlds. Welcome to the Edwardian Summer of the second age of globalisation. Spare a moment to take stock of what’s been happening in the past few months. Let’s start with the oil price, which has rocketed to more than $65 a barrel, more than double its level 18 months ago. The accepted wisdom is that we shouldn’t worry our little heads about that, because the incentives are there for business to build new production and refining capacity, which will effortlessly bring demand and supply back into balance and bring crude prices back to $25 a barrel. As Tommy Cooper used to say, ‘just like that’. Then there is the result of the French referendum on the European Constitution, seen as thick-headed luddites railing vainly against the modern world. What the French needed to realise, the argument went, was that there was no alternative to the reforms that would make the country more flexible, more competitive, more dynamic. Just the sort of reforms that allowed Gate Gourmet to sack hundreds of its staff at Heathrow after the sort of ultimatum that used to be handed out by Victorian mill owners. An alternative way of looking at the French “non” is that our neighbours translate “flexibility” as “you’re fired”. Finally, take a squint at the United States. Just like Britain a century ago, a period of unquestioned superiority is drawing to a close. China is still a long way from matching America’s wealth, but it is growing at a stupendous rate and economic strength brings geo-political clout. Already, there is evidence of a new scramble for Africa as Washington and Beijing compete for oil stocks. Moreover, beneath the surface of the US economy, all is not well. Growth looks healthy enough, but the competition from China and elsewhere has meant the world’s biggest economy now imports far more than it exports. The US is living beyond its means, but in this time of studied complacency a current account deficit worth 6 percent of gross domestic product is seen as a sign of strength, not weakness. In this new Edwardian summer, comfort is taken from the fact that dearer oil has not had the savage inflationary consequences of 1973-74, when a fourfold increase in the cost of crude brought an abrupt end to a postwar boom that had gone on uninterrupted for a quarter of a century. True, the cost of living has been affected by higher transport costs, but we are talking of inflation at b)3 per cent and not 27 per cent. Yet the idea that higher oil prices are of little consequence is fanciful. If people are paying more to fill up their cars it leaves them with less to spend on everything else, but there is a reluctance to consume less. In the 1970s unions were strong and able to negotiate large, compensatory pay deals that served to intensify inflationary pressure. In 2005, that avenue is pretty much closed off, but the abolition of all the controls on credit that existed in the 1970s means that households are invited to borrow more rather than consume less. The knock-on effects of higher oil prices are thus felt in different ways – through high levels of indebtedness, in inflated asset prices, and in balance of payments deficits.There are those who point out, rightly, that modern industrial capitalism has proved mightily resilient these past 250 years, and that a sign of the enduring strength of the system has been the way it apparently shrugged off everything – a stock market crash, 9/11, rising oil prices – that have been thrown at it in the half decade since the millennium. Even so, there are at least three reasons for concern. First, we have been here before. In terms of political economy, the first era of globalisation mirrored our own. There was a belief in unfettered capital flows, in free trade, and in the power of the market. It was a time of massive income inequality and unprecedented migration. Eventually, though, there was a backlash, manifested in a struggle between free traders and protectionists, and in rising labour militancy. Second, the world is traditionally at its most fragile at times when the global balance of power is in flux. By the end of the nineteenth century, Britain’s role as the hegemonic power was being challenged by the rise of the United States, Germany, and Japan while the Ottoman and Hapsburg empires were clearly in rapid decline. Looking ahead from 2005, it is clear that over the next two or three decades, both China and India – which together account for half the world’s population – will flex their muscles. Finally, there is the question of what rising oil prices tell us. The emergence of China and India means global demand for crude is likely to remain high at a time when experts say production is about to top out. If supply constraints start to bite, any declines in the price are likely to be short-term cyclical affairs punctuating a long upward trend.By the expression ‘Edwardian Summer’, the author refers to a period in which there is
 ...
MCQ-> Analyse the following transcript (from the movie Matrix) and provide an appropriate answer for the questions that follow: Neo: Morpheus, what's happened to me? What is this place? Morpheus: More important than what is when. Neo: When? Morpheus: You believe it's the year 1999 when in fact it's closer to 2199. I can't tell you exactly what year it is because we honestly don't know.There's nothing I can say that will explain it for you, Neo. Come with me. See for yourself. This is my ship, the Nebuchadnezzar. It's a hovercraft. This is the main deck. This is the core where we broadcast our pirate signal and hack into the Matrix. Most of my crew you already know. (Next Scene: Construct) Morpheus: This is the construct. It's our loading programme. We can load anything from clothing, to equipment, weapons, training simulations, anything we need. Neo: Right now we're inside a computer programme? Morpheus: Is it really so hard to believe? Your clothes are different. The plugs in your arms and head are gone. Your hair is changed. Your appearance now is what we call residual self image. It is the mental projection of your digital self. Neo: This...this isn't real? Morpheus: What is real? How do you define real? If you're talking about what you can feel, what you can smell, what you can taste and see, then real is simply electrical signals interpreted by your brain. ...This is the world that you know. The world as it was at the end of the twentieth century. It exists now only as part of a neural-interactive simulation that we call the Matrix. You've been living in a dream world, Neo. .. .This is the world as it exists today. Welcome to the Desert of the Real. We have only bits and pieces of information but what we know for certain is that at some point in the early twenty-first century all of mankind was united in celebration. We marvelled at our own magnificence as we gave birth to AI. Neo: AI? You mean artificial intelligence? Morpheus: A singular consciousness that spawned an entire race of machines. We don't know who struck first, us or them. But we know that it was us that scorched the sky. At the time they were dependent on solar power and it was believed that they would be unable to survive without an energy source as abundant as the sun. Throughout human history, we have been dependent on machines to survive. Fate it seems is not without a sense of irony. The human body generates more bio-electricity than a 120-volt battery and over 25,000 BTU's of body heat. Combined with a form of fusion the machines have found all the energy they would ever need. There are fields, endless fields, where human beings are no longer born, we are grown. For the longest time I wouldn't believe it, and then I saw the fields with my own eyes. Watch them liquefy the dead so they could be fed intravenously to the living. And standing there, facing the pure horrifying precision, I came to realize the obviousness of the truth. What is the Matrix? Control. The Matrix is a computer generated dream world built to keep us under control in order to change a human being into this. Neo: No. I don't believe it. It's not possible. Morpheus: I didn't say it would be easy, Neo. I just said it would be the truth. Neo: Stop. Let me out. Let me out. I want out.The innate factor responsible for the status of human beings in later part of 22nd century is
 ...
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use
DMCA.com Protection Status Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions